

Gabarito: Funções

1. [C]

A taxa de evaporação do Líquido $_1$ é $\frac{200}{80}$ = 2,5 mL/dia, enquanto que a do Líquido $_2$ é igual a $\frac{180}{96}$ = 1,875 mL/dia. Logo, se $_1$ é o número de dias decorridos até que os dois líquidos alcancem o mesmo nível, então $_2$ = 180 - 1,875 t \Leftrightarrow t = 32.

- 2. [A]
- 3. [C] De acordo com as instruções do boleto, o valor a ser pago x dias após o vencimento é dado por $M(x) = 500 + 10 + 0, 4 \cdot x = 510 + 0, 4x$.
- 4. [C]

Seja $f: \square \to \square$ a função definida por f(x) = ax + b, que associa a cada ano x o número f(x) de espécies ameaçadas de extinção.

Queremos calcular f(2011).

Temos que

$$a = \frac{461 - 239}{2007 - 1983} = 9,25$$

е

$$f(1983) = 239 \Leftrightarrow 239 = 9,25 \cdot 1983 + b \Leftrightarrow b = -18103,75.$$

Portanto,

$$f(2011) = 9,25 \cdot 2011 - 18103,75 = 498.$$

Também poderíamos convenientemente ter considerado o ano 1983 como o ano zero, com f(0) = 239. Daí, 2007 corresponderia ao ano 24 e o resultado procurado seria f(28). Por conseguinte,

$$a = \frac{461 - 239}{24 - 0} = 9,25$$

е

$$f(28) = 9,25 \cdot 28 + 239 = 498.$$

(==) 1,== == ===

Se considerarmos outubro de 2003 como t=0, teremos setembro de 2004 como t=11. Como o crescimento é linear podemos considerar os pontos (0,10) e (11,30) como pontos de uma reta, representada pela equação $y=10+\frac{20}{11}\cdot t$, onde y é a taxa de veículos bicombustíveis nas vendas de veículos leves.

Fazendo y = 70, temos t = 33, ou seja, no mês de julho de 2006.

- 6. [C]
- 7. [B]
- 8. [D]
- 9. [B]

10. [B]

Considerando x o numero de moedas douradas coletadas, a pontuação seria dada por:

$$P(x) = x - \frac{x}{100} \cdot x \Rightarrow P(x) = -\frac{x^2}{100} + x$$

Logo, o valor máximo de P(x) será dado por:

$$P_{\text{máximo}} = -\frac{\Delta}{4 \cdot a} = -\frac{1}{4 \cdot \left(\frac{-1}{100}\right)} = 25.$$

Portanto, o limite de pontos que um competidor poderá alcançar nesta prova é 25.

11. [E]

A quantidade comercializada para se ter a receita máxima é o x do vértice e a receita máxima corresponde ao y do vértice.

$$x_V = -\frac{b}{2 \cdot a} = -\frac{(-100)}{2 \cdot (-1)} = 50.$$

$$y = -\frac{\Delta}{4a} = -\frac{100^2}{4 \cdot (-1)} = 2500.$$

12. [C]

Do gráfico, temos que os zeros da função quadrática são 2 e 5. Logo, a lei da função é dada por $y = a \cdot (x-2) \cdot (x-5)$, com $a \in \mathbb{R}^*$. Então, como a parábola intersecta o eixo das ordenadas no ponto (0, -10), segue que

$$-10 = a \cdot (0-2) \cdot (0-5) \Leftrightarrow a = -1.$$

Portanto, $y = -(x-2) \cdot (x-5)$ e a soma pedida é igual a $-(1-2) \cdot (1-5) = -4$.

13. [D]

Sejam x e y as dimensões do terreno. Logo, temos 2x + 2y = 40, isto é, y = 20 - x.

A área, A, do terreno é dada por A = xy. Desse modo, vem

$$A = x(20 - x)$$
$$= 100 - (x - 10)^{2}.$$

Em consequência, é fácil ver que, para x = 10 m, a área da construção é máxima, e seu valor é igual a 100 m^2 .

14. [B]

Seja x o número de descontos de R\$ 1,00. Logo, o faturamento mensal é dado por

$$R(x) = (40 - x)(200 + 10x)$$
$$= -10(x - 40)(x + 20).$$

O valor de χ para o qual se tem o faturamento máximo é $\frac{40-20}{2}=10$.

Portanto, a resposta é $10 \cdot R$ \$ 1,00 = R\$ 10,00.

15. [E]

16. [C]

17. [D]

- 18. [D]
- 19. [D]
- 20. [E]

Gabarito: ARITMÉTICA E CONJUNTOS NUMÉRICOS

1. [C] Calculando:

Pacote I
$$\Rightarrow \frac{2,10}{3} = 0,70$$

Pacote II
$$\Rightarrow \frac{2,60}{4} = 0,65$$

Pacote III
$$\Rightarrow \frac{3,00}{5} = 0,60$$

Pacote IV
$$\Rightarrow \frac{3,90}{6} = 0,65$$

Pacote V
$$\Rightarrow \frac{9,60}{12} = 0,80$$

2. [E]

Calculando o custo total para cada uma das impressoras, considerando-se 50.000 cópias:

custo cópia A =
$$\frac{80}{1000}$$
 = 0,08 \Rightarrow custo total A = 500 + 0,08 \cdot 50000 = 4500,00

custo cópia B =
$$\frac{140}{2000}$$
 = 0,07 \Rightarrow custo total B = 1100 + 0,07 \cdot 50000 = 4600,00

custo cópia
$$C = \frac{80}{1000} = 0.05 \Rightarrow$$
 custo total $C = 2000 + 0.05 \cdot 50000 = 4500.00$

Logo, conclui-se que a empresa pode adquirir a impressora A ou C, descartando a B (maior custo).

3. [A] Calculando:

Cidade	Número total de habitantes	Número total de médicos	Razão hab/médico
М	136.000	340	$\frac{136000}{340} = 400$
Х	418.000	2.650	$\frac{418000}{2650} \approx 157,74$
Y	210.000	930	$\frac{210000}{930} = 225,80$
Z	530.000	1.983	$\frac{530000}{1983} \approx 267,27$
W	108.000	300	$\frac{108000}{300} = 360$
Total	1.402.000	6.203	$\frac{1402000}{6203}\approx 226,02$

4. [C]

Calculando:

Carro A
$$\Rightarrow \frac{100}{10} = 10 \text{ km/litro}$$

Carro B
$$\Rightarrow \frac{200}{40} = 5 \text{ km/litro}$$

Carro C
$$\Rightarrow \frac{400}{20} = 20 \text{ km/litro}$$

Carro D
$$\Rightarrow \frac{550}{50} = 11 \text{ km/litro}$$

Carro E
$$\Rightarrow \frac{600}{40} = 15 \text{ km/litro}$$

5. [A]

 $90000 \cdot 24 = 2160000 = 2,16$ milhões de declarações.

6. [E]

4125 = 8.500 + 125. Portanto, dará 500 voltas completas na pista e chegará à Padaria.

7. [A]

$$30-20=10 \text{ m}^3$$
 (Volume ocioso do reservatório)

$$25-10=15 \text{ m}^3$$
 (Volume do novo reservatório)

8. [E]

9. [C]

Observando o gráfico nota-se que a equipe obteve:

Portanto, 18 pontos.

10. [C]

Pontos do candidato
$$A = 10 \cdot 3 + 4 \cdot 3 + 2 \cdot 2 + 7 \cdot 1 + 3 \cdot 2 + 7 \cdot 1 = 66$$

Pontos do candidato
$$B = 10 \cdot 2 + 4 \cdot 1 + 2 \cdot 3 + 7 \cdot 3 + 3 \cdot 1 + 7 \cdot 2 = 68$$

Pontos do candidato
$$C = 10 \cdot 1 + 4 \cdot 2 + 2 \cdot 1 + 7 \cdot 2 + 3 \cdot 3 + 7 \cdot 3 = 64$$

Logo, B é eleito com 68 pontos.

11. [B]

O tempo de espera nas máquinas 1, 2, 3, 4 e 5 são, respectivamente, iguais a

$$35 \cdot 5 = 175 \text{ s}, 25 \cdot 6 = 150 \text{ s}, 22 \cdot 7 = 154 \text{ s}, 40 \cdot 4 = 160 \text{ s} \in 20 \cdot 8 = 160 \text{ s}.$$

Portanto, o passageiro deverá se dirigir à máquina 2

12. [D]

Calculando o coeficiente de impacto das lagoas, encontramos a tabela abaixo.

Lagoa	Contaminação média por mercúrio em peixes (miligrama)	Tamanho da população ribeirinha (habitante)	Coeficiente de impacto
Antiga	2,1	1522	3196,2
Bela	3,4	2508	8527,2
Delícia	42,9	2476	106220,4
Salgada	53,9	2455	132324,5
Vermelha	61,4	145	8903

Por conseguinte, é imediato que a primeira lagoa que sofrerá a intervenção planejada será a Salgada.

13. [E]

Se a primeira gasta $\frac{1}{10}$ do volume do frasco por dia e a segunda $\frac{1}{20}$ do volume do frasco por dia, então o número mínimo de frascos de xampu que deverão levar na viagem é $60 \cdot \left(\frac{1}{10} + \frac{1}{20}\right) = 9$.

14. [E]

É imediato que $\frac{6}{8} = \frac{3}{4} = 0.75 = 75\%$. Portanto, a resposta é 3.

15. [A]

Tem-se que

$$0,3121212... = 0,3 + 0,0121212...$$

$$= 0,3 + \frac{1}{10} \cdot 0,121212...$$

$$= \frac{3}{10} + \frac{1}{10} \cdot \frac{12}{99}$$

$$= \frac{3}{10} + \frac{1}{10} \cdot \frac{4}{33}$$

$$= \frac{99 + 4}{330}$$

$$= \frac{103}{330}.$$

Portanto, o índice revela que as quantidades relativas de admiradores do estudante e pessoas que visitam seu perfil são 103 em cada 330.

16. [B]

A quantidade de candidatos selecionados pelo clube de futebol foi $\frac{7}{8} \cdot \frac{1}{2} \cdot \frac{2}{3} \cdot 48 = 14$.

17. [D]

Se no primeiro abastecimento foram distribuídos $\frac{1}{4}$ da capacidade do caminhão, então restou $1-\frac{1}{4}=\frac{3}{4}$ da capacidade.

Distribuindo $\frac{1}{3}$ de $\frac{3}{4}$, ou seja, $\frac{1}{3} \cdot \frac{3}{4} = \frac{1}{4}$ no segundo abastecimento, podemos concluir que a fração da capacidade do

caminhão que foi distribuída no terceiro abastecimento é igual a $\frac{3}{4} - \frac{1}{4} = \frac{2}{4} = \frac{1}{2}$.

18. [C]

Desde que 1000 = 6.166 + 4, podemos concluir que o milésimo cliente receberá de brinde um refrigerante.

19. [D]

A resposta, em dias, é dada por

mmc(40, 32, 28) = mmc(
$$2^3 \cdot 5, 2^5, 2^2 \cdot 7$$
)
= $2^5 \cdot 5 \cdot 7$
= 1120.

20. [D]

Como $x = \sqrt{3} \cong 1,7; y = -\frac{1}{2} = -0,5$ e $z = \frac{3}{2} = 1,5$, tem-se t < y < z < x. Assim, a figura que representa o jogo de Clara é a da alternativa [D]. Note que na alternativa [A], x = 3.